Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

Identifieur interne : 000161 ( PascalFrancis/Corpus ); précédent : 000160; suivant : 000162

Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

Auteurs : C. Ordonez ; A. Richter ; M. Steinbacher ; C. Zellweger ; H. Nüss ; J. P. Burrows ; A. S. H. Prevot

Source :

RBID : Pascal:06-0232377

Descripteurs français

English descriptors

Abstract

Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOxanalyzers are taken into account. For a more quantitative comparison, the NO2ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 D5
A08 01  1  ENG  @1 Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy
A11 01  1    @1 ORDONEZ (C.)
A11 02  1    @1 RICHTER (A.)
A11 03  1    @1 STEINBACHER (M.)
A11 04  1    @1 ZELLWEGER (C.)
A11 05  1    @1 NÜSS (H.)
A11 06  1    @1 BURROWS (J. P.)
A11 07  1    @1 PREVOT (A. S. H.)
A14 01      @1 Laboratory of Atmospheric Chemistry, Paul Scherrer Institut @2 Villigen @3 CHE @Z 1 aut. @Z 7 aut.
A14 02      @1 Institute of Environmental Physics, University of Bremen @2 Bremen @3 DEU @Z 2 aut. @Z 5 aut. @Z 6 aut.
A14 03      @1 Swiss Federal Institute for Materials Science and Technology @2 Dubendorf @3 CHE @Z 3 aut. @Z 4 aut.
A20       @2 D05310.1-D05310.12
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000156802760390
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 06-0232377
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOxanalyzers are taken into account. For a more quantitative comparison, the NO2ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Satellite @5 01
C03 01  2  ENG  @0 satellites @5 01
C03 01  2  SPA  @0 Satélite @5 01
C03 02  2  FRE  @0 Troposphère @5 02
C03 02  2  ENG  @0 troposphere @5 02
C03 03  X  FRE  @0 Densité colonne @5 03
C03 03  X  ENG  @0 Column density @5 03
C03 03  X  SPA  @0 Densidad columna @5 03
C03 04  2  FRE  @0 Monde @5 04
C03 04  2  ENG  @0 global @5 04
C03 04  2  SPA  @0 Mundo @5 04
C03 05  2  FRE  @0 Ozone @5 05
C03 05  2  ENG  @0 ozone @5 05
C03 05  2  SPA  @0 Ozono @5 05
C03 06  2  FRE  @0 Surveillance @5 06
C03 06  2  ENG  @0 monitoring @5 06
C03 06  2  SPA  @0 Vigilancia @5 06
C03 07  2  FRE  @0 Etude expérimentale @5 07
C03 07  2  ENG  @0 experimental studies @5 07
C03 08  X  FRE  @0 Absorption optique @5 08
C03 08  X  ENG  @0 Optical absorption @5 08
C03 08  X  SPA  @0 Absorción óptica @5 08
C03 09  X  FRE  @0 Mesure in situ @5 09
C03 09  X  ENG  @0 Measurement in situ @5 09
C03 09  X  SPA  @0 Medición en sitio @5 09
C03 10  2  FRE  @0 Nuage @5 10
C03 10  2  ENG  @0 clouds @5 10
C03 10  2  SPA  @0 Nube @5 10
C03 11  2  FRE  @0 Versant @5 11
C03 11  2  ENG  @0 slopes @5 11
C03 11  2  SPA  @0 Declive @5 11
C03 12  X  FRE  @0 Automne @5 12
C03 12  X  ENG  @0 Autumn @5 12
C03 12  X  SPA  @0 Otoño @5 12
C03 13  X  FRE  @0 Hiver @5 13
C03 13  X  ENG  @0 Winter @5 13
C03 13  X  SPA  @0 Invierno @5 13
C03 14  2  FRE  @0 Source @5 14
C03 14  2  ENG  @0 springs @5 14
C03 14  2  SPA  @0 Fuente @5 14
C03 15  X  FRE  @0 Printemps @5 15
C03 15  X  ENG  @0 Spring(season) @5 15
C03 15  X  SPA  @0 Primavera @5 15
C03 16  X  FRE  @0 Eté @5 16
C03 16  X  ENG  @0 Summer @5 16
C03 16  X  SPA  @0 Verano @5 16
C03 17  3  FRE  @0 Peracétique acide nitrate @2 NK @5 17
C03 17  3  ENG  @0 Peroxyacetyl nitrate @2 NK @5 17
C03 18  X  FRE  @0 Nitrique acide @2 NK @5 18
C03 18  X  ENG  @0 Nitric acid @2 NK @5 18
C03 18  X  SPA  @0 Nítrico ácido @2 NK @5 18
C03 19  2  FRE  @0 Modèle @5 19
C03 19  2  ENG  @0 models @5 19
C03 19  2  SPA  @0 Modelo @5 19
C03 20  2  FRE  @0 Traceur @5 20
C03 20  2  ENG  @0 tracers @5 20
C03 20  2  SPA  @0 Trazador @5 20
C03 21  2  FRE  @0 Coefficient corrélation @5 21
C03 21  2  ENG  @0 correlation coefficient @5 21
C03 21  2  SPA  @0 Coeficiente correlación @5 21
C03 22  2  FRE  @0 Variation spatiale @5 22
C03 22  2  ENG  @0 spatial variations @5 22
C03 22  2  SPA  @0 Variación espacial @5 22
C03 23  2  FRE  @0 Pollution @5 23
C03 23  2  ENG  @0 pollution @5 23
C03 23  2  SPA  @0 Polución @5 23
C03 24  2  FRE  @0 Cycle @5 24
C03 24  2  ENG  @0 cycles @5 24
C03 25  2  FRE  @0 Aérosol @5 25
C03 25  2  ENG  @0 aerosols @5 25
C03 25  2  SPA  @0 Aerosol @5 25
C03 26  2  FRE  @0 Milan @2 NG @5 61
C03 26  2  ENG  @0 Milan Italy @2 NG @5 61
C07 01  2  FRE  @0 Lombardie @2 NG
C07 01  2  ENG  @0 Lombardy Italy @2 NG
C07 01  2  SPA  @0 Lombardía @2 NG
C07 02  2  FRE  @0 Italie @2 NG
C07 02  2  ENG  @0 Italy @2 NG
C07 02  2  SPA  @0 Italia @2 NG
C07 03  2  FRE  @0 Europe Sud @2 NG
C07 03  2  ENG  @0 Southern Europe @2 NG
C07 03  2  SPA  @0 Europa Sur @2 NG
C07 04  2  FRE  @0 Europe
C07 04  2  ENG  @0 Europe
C07 04  2  SPA  @0 Europa
N21       @1 142
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0232377 INIST
ET : Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy
AU : ORDONEZ (C.); RICHTER (A.); STEINBACHER (M.); ZELLWEGER (C.); NÜSS (H.); BURROWS (J. P.); PREVOT (A. S. H.)
AF : Laboratory of Atmospheric Chemistry, Paul Scherrer Institut/Villigen/Suisse (1 aut., 7 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (2 aut., 5 aut., 6 aut.); Swiss Federal Institute for Materials Science and Technology/Dubendorf/Suisse (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D5; D05310.1-D05310.12; Bibl. 1 p.1/4
LA : Anglais
EA : Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOxanalyzers are taken into account. For a more quantitative comparison, the NO2ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.
CC : 220; 001E; 001E01
FD : Satellite; Troposphère; Densité colonne; Monde; Ozone; Surveillance; Etude expérimentale; Absorption optique; Mesure in situ; Nuage; Versant; Automne; Hiver; Source; Printemps; Eté; Peracétique acide nitrate; Nitrique acide; Modèle; Traceur; Coefficient corrélation; Variation spatiale; Pollution; Cycle; Aérosol; Milan
FG : Lombardie; Italie; Europe Sud; Europe
ED : satellites; troposphere; Column density; global; ozone; monitoring; experimental studies; Optical absorption; Measurement in situ; clouds; slopes; Autumn; Winter; springs; Spring(season); Summer; Peroxyacetyl nitrate; Nitric acid; models; tracers; correlation coefficient; spatial variations; pollution; cycles; aerosols; Milan Italy
EG : Lombardy Italy; Italy; Southern Europe; Europe
SD : Satélite; Densidad columna; Mundo; Ozono; Vigilancia; Absorción óptica; Medición en sitio; Nube; Declive; Otoño; Invierno; Fuente; Primavera; Verano; Nítrico ácido; Modelo; Trazador; Coeficiente correlación; Variación espacial; Polución; Aerosol
LO : INIST-3144.354000156802760390
ID : 06-0232377

Links to Exploration step

Pascal:06-0232377

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of 7 years of satellite-borne and ground-based tropospheric NO
<sub>2</sub>
measurements around Milan, Italy</title>
<author>
<name sortKey="Ordonez, C" sort="Ordonez, C" uniqKey="Ordonez C" first="C." last="Ordonez">C. Ordonez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut</s1>
<s2>Villigen</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, A" sort="Richter, A" uniqKey="Richter A" first="A." last="Richter">A. Richter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steinbacher, M" sort="Steinbacher, M" uniqKey="Steinbacher M" first="M." last="Steinbacher">M. Steinbacher</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Swiss Federal Institute for Materials Science and Technology</s1>
<s2>Dubendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zellweger, C" sort="Zellweger, C" uniqKey="Zellweger C" first="C." last="Zellweger">C. Zellweger</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Swiss Federal Institute for Materials Science and Technology</s1>
<s2>Dubendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nuss, H" sort="Nuss, H" uniqKey="Nuss H" first="H." last="Nüss">H. Nüss</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, J P" sort="Burrows, J P" uniqKey="Burrows J" first="J. P." last="Burrows">J. P. Burrows</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prevot, A S H" sort="Prevot, A S H" uniqKey="Prevot A" first="A. S. H." last="Prevot">A. S. H. Prevot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut</s1>
<s2>Villigen</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0232377</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0232377 INIST</idno>
<idno type="RBID">Pascal:06-0232377</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Comparison of 7 years of satellite-borne and ground-based tropospheric NO
<sub>2</sub>
measurements around Milan, Italy</title>
<author>
<name sortKey="Ordonez, C" sort="Ordonez, C" uniqKey="Ordonez C" first="C." last="Ordonez">C. Ordonez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut</s1>
<s2>Villigen</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, A" sort="Richter, A" uniqKey="Richter A" first="A." last="Richter">A. Richter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steinbacher, M" sort="Steinbacher, M" uniqKey="Steinbacher M" first="M." last="Steinbacher">M. Steinbacher</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Swiss Federal Institute for Materials Science and Technology</s1>
<s2>Dubendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zellweger, C" sort="Zellweger, C" uniqKey="Zellweger C" first="C." last="Zellweger">C. Zellweger</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Swiss Federal Institute for Materials Science and Technology</s1>
<s2>Dubendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nuss, H" sort="Nuss, H" uniqKey="Nuss H" first="H." last="Nüss">H. Nüss</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, J P" sort="Burrows, J P" uniqKey="Burrows J" first="J. P." last="Burrows">J. P. Burrows</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prevot, A S H" sort="Prevot, A S H" uniqKey="Prevot A" first="A. S. H." last="Prevot">A. S. H. Prevot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut</s1>
<s2>Villigen</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autumn</term>
<term>Column density</term>
<term>Measurement in situ</term>
<term>Milan Italy</term>
<term>Nitric acid</term>
<term>Optical absorption</term>
<term>Peroxyacetyl nitrate</term>
<term>Spring(season)</term>
<term>Summer</term>
<term>Winter</term>
<term>aerosols</term>
<term>clouds</term>
<term>correlation coefficient</term>
<term>cycles</term>
<term>experimental studies</term>
<term>global</term>
<term>models</term>
<term>monitoring</term>
<term>ozone</term>
<term>pollution</term>
<term>satellites</term>
<term>slopes</term>
<term>spatial variations</term>
<term>springs</term>
<term>tracers</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Satellite</term>
<term>Troposphère</term>
<term>Densité colonne</term>
<term>Monde</term>
<term>Ozone</term>
<term>Surveillance</term>
<term>Etude expérimentale</term>
<term>Absorption optique</term>
<term>Mesure in situ</term>
<term>Nuage</term>
<term>Versant</term>
<term>Automne</term>
<term>Hiver</term>
<term>Source</term>
<term>Printemps</term>
<term>Eté</term>
<term>Peracétique acide nitrate</term>
<term>Nitrique acide</term>
<term>Modèle</term>
<term>Traceur</term>
<term>Coefficient corrélation</term>
<term>Variation spatiale</term>
<term>Pollution</term>
<term>Cycle</term>
<term>Aérosol</term>
<term>Milan</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tropospheric NO
<sub>2</sub>
vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO
<sub>2</sub>
at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO
<sub>2</sub>
VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO
<sub>3</sub>
) interferences of conventional NO
<sub>x</sub>
analyzers are taken into account. For a more quantitative comparison, the NO
<sub>2</sub>
ground measurements were scaled to tropospheric VCDs using a seasonal NO
<sub>2</sub>
vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO
<sub>2</sub>
amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO
<sub>2</sub>
VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO
<sub>2</sub>
VCDs, might be as important as those of the NO
<sub>2</sub>
satellite retrieval itself.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>D5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of 7 years of satellite-borne and ground-based tropospheric NO
<sub>2</sub>
measurements around Milan, Italy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ORDONEZ (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RICHTER (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEINBACHER (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZELLWEGER (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NÜSS (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BURROWS (J. P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PREVOT (A. S. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut</s1>
<s2>Villigen</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Swiss Federal Institute for Materials Science and Technology</s1>
<s2>Dubendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>D05310.1-D05310.12</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000156802760390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0232377</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tropospheric NO
<sub>2</sub>
vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO
<sub>2</sub>
at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO
<sub>2</sub>
VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO
<sub>3</sub>
) interferences of conventional NO
<sub>x</sub>
analyzers are taken into account. For a more quantitative comparison, the NO
<sub>2</sub>
ground measurements were scaled to tropospheric VCDs using a seasonal NO
<sub>2</sub>
vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO
<sub>2</sub>
amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO
<sub>2</sub>
VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO
<sub>2</sub>
VCDs, might be as important as those of the NO
<sub>2</sub>
satellite retrieval itself.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Satellite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>satellites</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Satélite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Densité colonne</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Column density</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Densidad columna</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Monde</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>global</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Surveillance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>monitoring</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Vigilancia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Absorption optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optical absorption</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Absorción óptica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure in situ</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Measurement in situ</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medición en sitio</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Nuage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>clouds</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Nube</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Versant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>slopes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Declive</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Automne</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Autumn</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Otoño</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Hiver</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Winter</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Invierno</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Source</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>springs</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Fuente</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Printemps</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Spring(season)</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Primavera</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Eté</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Summer</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Verano</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Peracétique acide nitrate</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Peroxyacetyl nitrate</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrique acide</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Nitric acid</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Nítrico ácido</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>models</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>tracers</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Coefficient corrélation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>correlation coefficient</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Coeficiente correlación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Variation spatiale</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>spatial variations</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Variación espacial</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>pollution</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Polución</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Cycle</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>cycles</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Milan</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>Milan Italy</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Lombardie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Lombardy Italy</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Lombardía</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Italie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Italy</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Italia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Europe Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Southern Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Europa Sur</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Europe</s0>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Europe</s0>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Europa</s0>
</fC07>
<fN21>
<s1>142</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0232377 INIST</NO>
<ET>Comparison of 7 years of satellite-borne and ground-based tropospheric NO
<sub>2</sub>
measurements around Milan, Italy</ET>
<AU>ORDONEZ (C.); RICHTER (A.); STEINBACHER (M.); ZELLWEGER (C.); NÜSS (H.); BURROWS (J. P.); PREVOT (A. S. H.)</AU>
<AF>Laboratory of Atmospheric Chemistry, Paul Scherrer Institut/Villigen/Suisse (1 aut., 7 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (2 aut., 5 aut., 6 aut.); Swiss Federal Institute for Materials Science and Technology/Dubendorf/Suisse (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D5; D05310.1-D05310.12; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Tropospheric NO
<sub>2</sub>
vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO
<sub>2</sub>
at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO
<sub>2</sub>
VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO
<sub>3</sub>
) interferences of conventional NO
<sub>x</sub>
analyzers are taken into account. For a more quantitative comparison, the NO
<sub>2</sub>
ground measurements were scaled to tropospheric VCDs using a seasonal NO
<sub>2</sub>
vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO
<sub>2</sub>
amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO
<sub>2</sub>
VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO
<sub>2</sub>
VCDs, might be as important as those of the NO
<sub>2</sub>
satellite retrieval itself.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Satellite; Troposphère; Densité colonne; Monde; Ozone; Surveillance; Etude expérimentale; Absorption optique; Mesure in situ; Nuage; Versant; Automne; Hiver; Source; Printemps; Eté; Peracétique acide nitrate; Nitrique acide; Modèle; Traceur; Coefficient corrélation; Variation spatiale; Pollution; Cycle; Aérosol; Milan</FD>
<FG>Lombardie; Italie; Europe Sud; Europe</FG>
<ED>satellites; troposphere; Column density; global; ozone; monitoring; experimental studies; Optical absorption; Measurement in situ; clouds; slopes; Autumn; Winter; springs; Spring(season); Summer; Peroxyacetyl nitrate; Nitric acid; models; tracers; correlation coefficient; spatial variations; pollution; cycles; aerosols; Milan Italy</ED>
<EG>Lombardy Italy; Italy; Southern Europe; Europe</EG>
<SD>Satélite; Densidad columna; Mundo; Ozono; Vigilancia; Absorción óptica; Medición en sitio; Nube; Declive; Otoño; Invierno; Fuente; Primavera; Verano; Nítrico ácido; Modelo; Trazador; Coeficiente correlación; Variación espacial; Polución; Aerosol</SD>
<LO>INIST-3144.354000156802760390</LO>
<ID>06-0232377</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0232377
   |texte=   Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023